
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

User’s Guide

Wireless Toolkit Version 1.0.4

Java™ 2 Platform, Micro Edition

June 2002

Please

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Forte, Solaris and the Java Coffee Cup logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD
TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet
en attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena. Le logiciel détenu par des tiers,
et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Forte, Solaris et le logo Java Coffee Cup sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xiii

1. Introduction to the Wireless Toolkit 1

Overview 1

Compilation and Prefabrication 3

Running and Debugging 3

Packaging 3

Packaging Obfuscated Source Code 5

2. Installing the Wireless Toolkit 7

System Requirements 7

Installation Procedure 7

Configuring the Palm OS Emulator 8

3. Operating with KToolBar 13

Navigating in KToolBar 14

KToolBar Projects 14

Creating a New Project 15

Opening an Existing Project 15

Editing MIDlet Suite Attributes 16

Modifying MIDlet Suite Attributes 16

Modifying MIDlet-Specific Attributes 17

Adding User-Defined Attributes 17
Contents iii

Removing User-Defined Attributes 18

Adding MIDlet-Specific Attributes 18

Removing MIDlet-Specific Attributes 18

Changing the Order of the MIDlets 19

Compiling and Preverifying 19

Running 19

Debugging 20

Cleaning Up Project Files 20

Packaging 21

Implementing Support for Code Obfuscation 21

Using Class Libraries 22

External Libraries for a Specific Project 22

External Libraries for All Projects 22

Setting Emulator Preferences and Using Emulator Utilities 23

Customizing KToolBar 24

Setting the Application Directory 24

Setting the Javac Encoding Property 24

Working with Revision Control Systems 24

4. Performance Tuning Applications 25

Profiling Your Application 25

Profiling Data Display 26

Viewing Profiling Information 27

Saving Profiling Information 27

Examining Saved Information 27

Examining Memory Usage 28

Memory Monitor Data Display 29

Viewing Memory Usage 30

Saving Memory Usage Information 31

Examining Saved Information 31
iv Wireless Toolkit User’s Guide • June 2002

Monitoring Network Traffic 32

Network Monitor Data Display 32

Viewing Network Traffic 34

Saving Message Information 34

Examining Saved Messages 34

Saving a Networking Session 35

Clearing the Message Tree 35

Filtering Messages 35

Disabling Filtering 35

Sorting Messages 36

Viewing Messages 36

Managing Device Speed 36

Setting Performance Parameters 37

Setting VM Speed Parameters 38

Setting Network Speed Parameters 38

5. Working With the Emulator 41

Example Devices 42

Device Characteristics 42

DefaultColorPhone and DefaultGrayPhone 43

MinimumPhone 44

Motorola_i85s 46

RIMJavaHandheld 47

PalmOS_Device 48

Inputting Text 49

Using the Device to Input Text 49

Using the Keyboard to Input Text 50

Application Demos 50

Selecting a Default Device 51

Preferences and Utilities 51
Contents v

Device Categories 52

DefaultEmulator Preferences 52

Setting the Web Proxy 53

Choosing an HTTP Version 54

Setting the Heap Size 54

Setting the RMS Directory 54

Enabling Tracing 54

DefaultEmulator Utilities 55

Cleaning Device Storage 56

Monitoring Memory Usage 56

Profiling Methods 56

Monitoring Network Traffic 56

PalmOSEmulator Preferences 56

Setting the Web Proxy 57

Setting the POSE Location 57

Showing the Heap Status 58

Saving Application Output 58

Enabling Double Buffering 58

Hiding the Soft Buttons 58

Setting the Graphics Depth 58

Showing the Keypad 58

PalmOSEmulator Utilities 59

Generating PRC Files 59

6. Operating From the Command Line 61

Preliminary Checks 61

Accessing Preferences and Utilities 61

Compiling Class Files 62

Arguments 62

Options 62
vi Wireless Toolkit User’s Guide • June 2002

Example 62

Preverifying Classes 63

Arguments 63

Options 63

Example 63

Packaging a MIDlet suite 63

Creating a Manifest File 64

Creating an Application JAR File 64

Arguments 64

Creating an Application JAD File 65

Example 65

Running the Emulator 65

General Options 65

Running Options 66

Tracing and Debugging Options 66

Emulator Preferences Setting Option 67

Java Application Manager (JAM) Options 69

Examples 69

7. Testing Application Provisioning 71

Deploying Applications on a Web Server 71

Running a Remotely-Deployed Application Using the Java Application Manager
(JAM) 72

A. MIDlet Attributes 75

B. MIDlet Demonstration 77

Demonstrating MIDlet Suites Deployed on a Local Disk 77

Demonstrating MIDlet Suites Deployed on a Web Site 78

C. Internationalization 79

Locale Setting for the Wireless Toolkit 79
Contents vii

Emulated Locale 80

Character Encodings 80

Java Compiler Encoding Setting 81

Font Support in the Default Emulator 81

D. Certificate Manager Utility 83

Usage 83

Index 85
viii Wireless Toolkit User’s Guide • June 2002

Figures

FIGURE 1 Developing and Testing an Application 2

FIGURE 2 Packaging an Application 2

FIGURE 3 MIDlet Suite Components 4

FIGURE 4 Properties Dialog 9

FIGURE 5 Debug Options Dialog 10

FIGURE 6 POSE Location Dialog 11

FIGURE 7 KToolBar Main Window 13

FIGURE 8 Console Output After Creating a Project 15

FIGURE 9 Project Settings Dialog 16

FIGURE 10 Console Output After Packaging 21

FIGURE 11 Accessing Emulator Preferences in KToolBar 23

FIGURE 12 Accessing Emulator Utilities on KToolBar 23

FIGURE 13 Profiler Window 26

FIGURE 14 Memory Monitor Window 28

FIGURE 15 Memory Monitor Graph 29

FIGURE 16 Memory Monitor Objects Table 30

FIGURE 17 Network Monitor Window 32

FIGURE 18 Message Key and Value Pair 33

FIGURE 19 Message Body 33

FIGURE 20 Performance Settings 37

FIGURE 21 Default Color Phone Device 44
ix

FIGURE 22 Minimum Phone Device 45

FIGURE 23 Motorola i85s Device 46

FIGURE 24 RIM Java Handheld Device 47

FIGURE 25 Palm OS Device 48

FIGURE 26 DefaultEmulator Preferences Dialog 53

FIGURE 27 Default Emulator Utilities Window 55

FIGURE 28 PalmOSEmulator Preferences Window 57

FIGURE 29 PalmOSEmulator Utilities Window 59

FIGURE 30 JAM Main Screen 73

FIGURE 31 Text Box for Entering Application URL 73
x Wireless Toolkit User’s Guide • June 2002

xi

Tables

TABLE 1 J2ME Wireless Toolkit Directory Contents 8

TABLE 2 Project File Organization 14

TABLE 3 Example Devices 42

TABLE 4 Selected Device Characteristics 42

TABLE 5 Pound ('#') and Asterisk ('*') Key Functions 50

TABLE 6 Emulator Preferences Properties List 67

TABLE 7 MIDlet Attributes 75

xii Wireless Toolkit User’s Guide • June 2002

Preface

The JavaTM 2 Platform, Micro Edition, Wireless Toolkit User’s Guide describes how to
install, configure and work with the J2METM Wireless Toolkit and its components.

Who Should Use This Book
This guide is intended for developers creating MIDP applications with the J2ME
Wireless Toolkit. This document assumes that you are familiar with Java
programming, Mobile Information Device Profile(MIDP), and the Connected
Limited Device Configuration (CLDC).
xiii

How This Book Is Organized
This guide contains the following chapters and appendixes:

Chapter 1 introduces the J2ME Wireless Toolkit and the MIDlet development
features it provides.

Chapter 2 describes system requirements and installation instructions for the J2ME
Wireless Toolkit. Also included is a information on configuring the PalmOS
emulator for use with the Wireless Toolkit.

Chapter 3 explains how to perform basic programming operations with KToolBar,
such compiling, preverifying, debugging, tracing, and packaging.

Chapter 4 describes the performance tuning features: profiling, memory
monitoring, network monitoring, and speed emulation.

Chapter 5 describes the example devices and demo applications provided by the
Wireless Toolkit. This chapter also explains how to input text to the devices, how to
set device preferences, and how to access the device utilities.

Chapter 6 describes command line operations, including arguments and options,
available in the J2ME Wireless Toolkit. This chapter includes an example of
stepping through a basic development cycle working from the command line.

Chapter 7 describes how to test and demonstrate the over the air initiated
provisionig process.

Appendix A lists and describes MIDlet attributes.

Appendix B describes how to demonstrate MIDlet s for non-development
purposes.

Appendix C describes internationalization features in the Wireless Toolkit.

Appendix D explains how certificate authority managers are used in the Wireless
Toolkit.

Using Operating System Commands
This document may not contain information on basic UNIX® or Microsoft
Windows commands and procedures such as opening a terminal window,
changing directories, and setting environment variables. See the software
documentation that you received with your system for this information.
xiv Wireless Toolkit User’s Guide • June 2002

Typographic Conventions

Shell Prompts

Related Documentation

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompt

C shell machine_name%

Microsoft Windows <directory>

Application Title

Customization J2ME Wireless Toolkit Basic Customization Guide

MIDP Building and Running MIDP
Preface xv

Accessing Sun Documentation Online
The Java Developer Connectionsm web site enables you to access Java™ platform
technical documentation on the Web:

http://developer.java.sun.com/developer/infodocs/

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

j2mewtk-comments@sun.com
xvi Wireless Toolkit User’s Guide • June 2002

http://developer.java.sun.com/developer/infodocs/

CHAPTER 1

Introduction to the Wireless Toolkit

The JavaTM 2 Platform, Micro Edition, Wireless Toolkit User’s Guide describes how to
install, configure and work with the J2METM Wireless Toolkit and its components.

The J2ME Wireless Toolkit supports the development of Java applications that run
on devices compliant with the Mobile Information Device Profile (MIDP), such as
cellular phones, two-way pagers, and palmtops.

This document assumes that you are familiar with Java programming, MIDP, and
the Connected Limited Device Configuration (CLDC). You can find more
information about MIDP and CLDC at the following URLs:

■ http://java.sun.com/products/midp
■ http://java.sun.com/products/cldc

Overview
The J2ME Wireless Toolkit supports a number of ways to develop MIDP
applications. You can carry out the development process by running the tools from
the command line or by using development environments that automate a large
part of this process.

The KToolBar, included with the J2ME Wireless Toolkit, is a minimal development
environment with a GUI for compiling, packaging, and executing MIDP
applications. The only other tools you need are a third-party editor for your Java
source files and a debugger. For more information on the KToolbar, see Chapter 3,
“Operating with KToolBar.”

An IDE compatible with the J2ME Wireless Toolkit provides even more
convenience. For example, when you use the Sun ONE Studio 4, Mobile Edition,
(formerly ForteTM for JavaTM) you can edit, compile, package, and execute or
debug MIDP applications, all within the same environment.

For a list of other IDEs that are compatible with the Wireless ToolKit, see
http://java.sun.com/products/j2mewtoolkit/, the JavaTM 2 Platform
Micro Edition, Wireless Toolkit web page.
1

http://java.sun.com/products/midp
http://java.sun.com/products/cldc
http://java.sun.com/products/j2mewtoolkit/

This section describes the phases of MIDP application development outside of
editing, and how the toolkit contributes to these phases. The phases are illustrated
in the following diagrams.

FIGURE 1 Developing and Testing an Application

FIGURE 2 Packaging an Application
2 Wireless Toolkit User’s Guide • June 2002

Compilation and Prefabrication
When you use KToolbar or a toolkit-compatible environment, such as the Sun ONE
Studio 4, Mobile Edition, the environment compiles your source files for you, using
the Java 2 SDK, Standard Edition (J2SETM SDK) compiler.

After compiling the sources, the development environment passes the generated
class files to the Preverifier. This tool rearranges bytecodes in the classes to simplify
the final stage of bytecode verification on the CLDC virtual machine. It also checks
for the use of virtual machine features that are not supported by the CLDC.

For more information on how to compile and preverify files using KToolbar, see
Chapter 3, “Operating with KToolBar.”

You can also perform compilation and preverification by running the tools on the
command line. For more information, see Chapter 6, “Operating From the
Command Line.”

Running and Debugging
When you use KToolbar or a toolkit-compatible environment such as the Sun ONE
Studio 4, Mobile Edition, you can run and debug applications within the
environment using the Emulator, which simulates the execution of the application
on different target devices.

The Emulator enables you to approximate the experience a user has with an
application on a particular device, and to test the portability of the application
across different devices. For more information, see Chapter 5, “Working With the
Emulator.”

You can also open the Emulator from the command line. For more information, see
Chapter 6, “Operating From the Command Line.”

Packaging
MIDP applications, or MIDlets, are packaged into a MIDlet suite, a grouping of
MIDlets that can share resources at runtime. The following diagram illustrates how
a MIDlet suite is organized.
Chapter 1 Introduction to the Wireless Toolkit 3

FIGURE 3 MIDlet Suite Components

More formally, a MIDlet suite includes:

■ A Java Application Descriptor (JAD) file. This file contains a predefined set of
attributes (denoted by names that begin with “MIDlet-”) that allow application
management software to identify, retrieve, and install the MIDlets. All attributes
appearing in the JAD file are made available to the MIDlets. You can define your
own application-specific attributes and add them to the JAD file. (For more
information on what attributes go into the JAD file, see Appendix A, “MIDlet
Attributes.”)

■ A Java Archive (JAR) file. The JAR file contains:

■ Java classes for each MIDlet in the suite.
■ Java classes shared between MIDlets.
■ Resource files used by the MIDlets (for example, image files).
■ A manifest file describing the JAR contents and specifying attributes used by

application management software to identify and install the MIDlet suite.
(For more information on what attributes go into the manifest, see
Appendix A, “MIDlet Attributes.”).

Development environments such as KToolBar and the Sun ONE Studio 4, Mobile
Edition automate the packaging of MIDlet suites. (For more information on how to
package applications using KToolBar, see “Packaging” on page 21.) To package
MIDlet suites from the command line, you need the J2SE SDK JAR tool to create
JAR files, and a text editor for creating JAD files.
4 Wireless Toolkit User’s Guide • June 2002

Packaging Obfuscated Source Code

An additional feature of the J2ME Wireless Toolkit is the ability to build an
obfuscated package. You are required to obtain a code obfuscator plug-in to use
this feature. The JAR file for the code obfuscator should be placed in the
j2mewtk.dir\bin directory.

Note – Creating an obfuscated package is only available through the KToolBar.

Obfuscation removes extraneous class information, such as local variable names.
Classes, methods, interfaces, and such are renamed so as to make them ambiguous.
An obfuscated package protects your project files from decompilation and reverse
engineering. In addition to protecting your source code, the obfuscation process
reduces the size of the classes resulting in smaller JAR files. The details of how
code is obfuscated is dependent on the specific code obfuscator you choose to use.

When creating an obfuscated package, preverification is done after the code has
been obfuscated rather than immediately after compilation.

For information on creating packages and obfuscated packages, see “Packaging” on
page 21 in Chapter 3, “Operating with KToolBar.”
Chapter 1 Introduction to the Wireless Toolkit 5

6 Wireless Toolkit User’s Guide • June 2002

CHAPTER 2

Installing the Wireless Toolkit

This chapter describes the system requirements for the J2ME Wireless Toolkit and
how to install the toolkit.

System Requirements
You can use the J2ME Wireless Toolkit on Windows NT 4.0, or Windows 2000
operating systems. (Unsupported versions of the toolkit for Solaris and Linux are
also available.) The toolkit requires 30MB of hard disk space, and 64MB of memory
at runtime.

Also, the Java 2 Software Development Kit, Standard Edition 1.3 or higher must
already be installed. You can download the J2SE SDK from
http://java.sun.com/j2se/1.4/.

If you want to run the tools with the Palm OS Emulator(POSE), you should install
the emulator before installing the toolkit. You can download the emulator from
http://www.palmos.com/dev/tech/tools/emulator/. Be sure to follow the
POSE installation instructions.

For information on the system requirements for the Palm OS Emulator, refer to its
documentation. For more information on the J2ME Wireless Toolkit, including
other IDEs that support the toolkit, see the page
http://java.sun.com/products/j2mewtoolkit, for the Java 2 Platform
Micro Edition, Wireless Toolkit.

Installation Procedure
To install the toolkit, run the installer, j2me_wireless_toolkit-1_0_4.exe. (If
you downloaded this file instead of running it directly from the Web site, double-
click the installer’s icon.) Follow the instructions the installer provides.
7

http://java.sun.com/j2se/1.4/
http://www.palmos.com/dev/tech/tools/emulator/
http://java.sun.com/products/j2mewtoolkit

Note – During the installation you are asked for the directory in which to place the
toolkit. This path should not contain spaces; if it does, some of the tools will not
work. For example, the directory C:\Program Files\wtk1.0.4 is not desirable
because there is a space between Program and Files.

The following table shows the contents of the installation directory, which is
referred to as {j2mewtk.dir} throughout this guide.

The installation also creates a program group for the J2ME Wireless Toolkit.

Configuring the Palm OS Emulator
If you want to use the Palm OS Emulator with the J2ME Wireless Toolkit, you must
first configure it as follows:

TABLE 1 J2ME Wireless Toolkit Directory Contents

File or Directory Description

BinaryLicense.html License agreement.

BinaryReleaseNotes.html Release notes.

index.html Index pointing to the toolkit documentation.

appdb\ Directory containing database files, such as RMS files
and ME keystore files.

apps\ Directory containing demo applications and additional
applications created by the KToolBar.

bin\ Batch files and executables for the tools.

docs\ Directory containing user and API documentation,
including this guide.

lib\midpapi.zip Archive containing the CLDC and MIDP API classes.
These files are used during the compilation of the
application source files and the byte-code pre-
verification of the application classes.

sessions\ Default directory containing profiling, memory
monitoring, and network monitoring session files.

wktlib\devices\ Directory containing property files for devices emulated
by the Emulator.
8 Wireless Toolkit User’s Guide • June 2002

1. Redirect NetLib calls to the host's TCP/IP.

For certain functions like debugging and Internet connectivity to work, you must
set NetLib API calls to be redirected from POSE to use your computer's TCP/IP.

a. Run POSE and right-click the emulator.

A menu appears.

b. Select Settings -> Properties...

The Properties dialog appears.

FIGURE 4 Properties Dialog

c. Check the Redirect NetLib calls to host TCP/IP box, and click OK.

The Properties dialog disappears.

d. Right-click the emulator and select Save.

Your changes are saved.

2. Disable debugging.

POSE allows various items to be debugged while the application executes.
However, for POSE to work with the J2ME Wireless Toolkit, debugging must be
disabled altogether.

a. Run POSE, and right-click the emulator.

A menu appears.
Chapter 2 Installing the Wireless Toolkit 9

b. Select Settings -> Debugging...

The Debug Options dialog appears.

FIGURE 5 Debug Options Dialog

c. Uncheck all the boxes and click OK.

The Debug Options dialog disappears.

d. Right-click the emulator and select Save.

Your changes are saved.

3. Set the POSE location in the J2ME Wireless Toolkit.

The first time you run an application using POSE through the J2ME Wireless
Toolkit, a dialog appears, asking you for the POSE location. After you set the
location, the dialog does not appear again when you run MIDP applications using
the emulator.
10 Wireless Toolkit User’s Guide • June 2002

FIGURE 6 POSE Location Dialog

If you need to change the POSE location after you have first set it, use the Palm OS
Preferences dialog. For more information, see “Configuring the Palm OS Emulator”
on page 8.
Chapter 2 Installing the Wireless Toolkit 11

12 Wireless Toolkit User’s Guide • June 2002

CHAPTER 3

Operating with KToolBar

KToolBar is a minimal development environment for developing MIDlet suites.
From the KToolBar, you can:

■ Create a new project or open an existing one
■ Build, run, and debug your MIDlet
■ Fine tune your MIDlet application
■ Package your project files
■ Modify the attributes of your MIDlet suite

To run the KToolBar:

● Choose Programs -> J2ME Wireless Toolkit 1.0.4 -> KToolbar from the Microsoft
Windows Start menu.

The main window appears:

FIGURE 7 KToolBar Main Window
13

Navigating in KToolBar
You can navigate through KToolBar windows (the main window, Profiling,
Memory Monitor, and Network Monitor windows) using the Tab and arrow keys.
Mnemonics on menus and buttons provide you with alternative means to initiating
commands. A mnemonic is the underlined letter that corresponds to the keyboard
key to press in conjunction with the Alt key to activate a command or to navigate
to a component in the window.

You can press the Tab key to bring the focus to a particular component of a
window and then use the arrow keys to manipulate that component.

KToolBar Projects
A KToolBar project is associated with a MIDlet suite. The project contains the
suite’s source, resource and binary files, as well as the JAD and manifest files that
contain the suite’s attributes.

Project files are located in project subdirectories under the Wireless Toolkit’s
installation directory, {j2mewtk.dir}. The following table shows how files are
organized within the directory for the project, {project.name}:

TABLE 2 Project File Organization

Directory Description

{j2mewtk.dir}\apps\{project.name} Contains all source, resource, and binary
files of the project

{j2mewtk.dir}\apps\{project.name}\src Contains all the source files.

{j2mewtk.dir}\apps\{project.name}\res Contains all the resource files.

{j2mewtk.dir}\apps\{project.name}\bin Contains the JAR, JAD, and unpacked
manifest files.

{j2mewtk.dir}\apps\{project.name}\lib Contains external class libraries, in JAR or
ZIP format for a specific project.

{j2mewtk.dir}\apps\lib Contains external class libraries, in JAR or
ZIP format for all KToolBar projects.
14 Wireless Toolkit User’s Guide • June 2002

Note – Adding external class libraries to a project increases the size of the MIDlet
suite’s JAR file. Large JAR files take longer to load onto a device, and might be
unusable on devices with low memory.

Creating a New Project
To create a new project:

1. Choose File -> New Project from the menu or click New Project on the toolbar.

The New Project dialog appears.

2. Type the name of the project in the Project Name field, and the name of the main
MIDlet class in the MIDlet Class Name field.

For example, you might call the project newproject, and the MIDlet class might
be myTest.Hello.

3. Click Create Project.

The main window’s title changes to include the name of the new project, as shown
by the following screenshot.

The console indicates where to place your source, resource, and library files. The
locations are consistent with the project file organization outlined in TABLE 2 on
page 14.

FIGURE 8 Console Output After Creating a Project

Opening an Existing Project
To open an existing project:
Chapter 3 Operating with KToolBar 15

1. Choose File -> Open Project from the menu or click Open Project on the toolbar.

The Open Project dialog appears with a list of projects.

2. Double-click the project, or choose the project and click Open Project.

The main window’s title changes to include the name of the project.

Editing MIDlet Suite Attributes
To edit a MIDlet suite’s attributes, use the project settings dialog, as shown in the
screenshot below. To bring up this dialog, choose Project -> Settings from the menu
or click the Settings button on the toolbar.

FIGURE 9 Project Settings Dialog

This section explains how to use the project settings dialog to modify a MIDlet
suite’s attributes. For more information about the attributes themselves, see
Appendix A, “MIDlet Attributes.”

Modifying MIDlet Suite Attributes

To modify a required, optional, or user-defined MIDlet suite attribute:

1. Click the Required, Optional, or User Defined tab.

Depending on which tab you click, the Required, Optional, or User Defined pane
appears.
16 Wireless Toolkit User’s Guide • June 2002

2. Choose the attribute, and click on its value field.

A cursor appears in the value field.

3. Make your changes, and press Enter.

The attribute’s entry reflects your changes.

4. Click OK to save your changes.

Modifying MIDlet-Specific Attributes

To modify an individual MIDlet’s name, icon, and class:

1. Click the MIDlets tab.

The MIDlets pane appears.

2. choose the MIDlet, and click Edit.

The Enter MIDlet Details dialog appears.

3. Make your changes, and click OK.

The Enter MIDlet Details dialog disappears, and the MIDlet’s entry reflects your
changes.

4. Click OK to save your changes.

Adding User-Defined Attributes

To add a user-defined attribute:

1. Click the User Defined tab.

The User Defined pane appears.

2. Click Add.

The Add Property dialog appears.

3. Enter the name of the attribute, and click OK.

The Add Property dialog disappears, and a new entry is created for the attribute.

4. Choose the attribute, and click on its value field.

A cursor appears in the value field.

5. Make your changes, and press Enter.

The attribute’s entry reflects your changes.

6. Click OK to save your changes.
Chapter 3 Operating with KToolBar 17

Note – Don’t use the prefix “MIDlet-” for a user-defined attribute. This format is
reserved for system-defined MIDlet attributes.

Removing User-Defined Attributes

To remove a user-defined attribute:

1. Click the User Defined tab.

The User Defined pane appears.

2. Select the attribute, and click Remove.

KToolbar asks if you are sure. If you are, then press Yes.

3. Click OK to save your changes.

Adding MIDlet-Specific Attributes

To add a MIDlet-specific attribute:

1. Click the MIDlets tab.

The MIDlets pane appears.

2. Click Add.

The Enter MIDlet Details dialog appears.

3. Enter the MIDlet’s attributes, and click OK.

The Enter MIDlet Details dialog disappears, and a new entry is created for the
MIDlet.

4. Click OK to save your changes.

Removing MIDlet-Specific Attributes

To remove a set of MIDlet-n attributes specific to a particular MIDlet:

1. Click the MIDlets tab.

The MIDlets pane appears.

2. Select the MIDlet, and click Remove.

KToolbar asks if you are sure. If you are, then press Yes.

3. Click OK to save your changes.
18 Wireless Toolkit User’s Guide • June 2002

Changing the Order of the MIDlets

To change the order of the MIDlets in the suite (that is, the order in which they are
listed when you launch the suite):

1. Click the MIDlets tab.

The MIDlets pane appears.

2. Select a MIDlet to move, and click Move Up or Move Down.

When you move the MIDlet, its number in the sequence is updated automatically.

3. Click OK to save your changes.

Compiling and Preverifying
The KToolBar compiles and preverifies source code in one sequence. To compile
and preverify your source code:

● Choose Project ->Build or click Build on the toolbar.

The sources are compiled against the MIDP and CLDC APIs, as well as any
libraries in the project’s lib\ folder and the toolkit’s \apps\lib\ folder.

Note – The Java classes are compiled with debugging information. In the
packaging stage the Java classes are compiled without debugging information.

Running
To run the current MIDlet suite in the Emulator using the KToolbar:

1. (Optional) Use the Device menu to select the device to be emulated.

The list displays the devices available for the loaded application.

2. Choose Project -> Run or click Run on the toolbar.

The Emulator appears, running your MIDlet suite.

The console displays system and trace output as a MIDlet suite executes.

To clear the console:
Chapter 3 Operating with KToolBar 19

● Choose Edit -> Clear Console from the menu or click Clear Console on the
toolbar.

(To specify what actually gets outputted to the console, see “Enabling Tracing”
on page 54 in Chapter 5, “Working With the Emulator.”)

Debugging
You can debug an application from within KToolBar by connecting to remote
debugging facilities, such as an IDE.

To debug an application under KToolBar:

1. Choose Project -> Debug.

The dialog asks you to enter a TCP/IP port number which the external debugger
can use to connect to the emulator.

2. Enter a TCP/IP port.

In most cases you can use the default value, but you should use another value if
another application is using this port, or if you encounter problems connecting to
the emulator from the debugger.

3. Click Debug.

The emulator begins running in debugging mode, and waits for a connection from
a debugger.

4. Start the remote debugger and attach it to the TCP/IP port you specified in step 2.

Make sure to set the remote debugger to run in remote mode and to use TCP/IP.
For more information, consult the debugger’s documentation.

Cleaning Up Project Files
To remove obsolete or unnecessary files in your project directory:

● Choose Project -> Clean.

The Clean command deletes all temporary and class files in the current project
directory.
20 Wireless Toolkit User’s Guide • June 2002

Packaging
You can create a package of your project files or create an obfuscated package to
protect your code from possible decompilation. Another benefit to creating an
obfuscated package is that the obfuscation process reduces the size of the Java
bytecode, resulting in a smaller JAR file and possibly faster download times.

To build a package:

● Choose Project -> Package -> Create Package or Create Obfuscated Package.

Choosing Create Package creates a standard .jar file. When the classes are
packaged, they are compiled without debugging information to reduce the size of
the JAR file.

Choosing Create Obfuscated Package creates a .jar file containing obfuscated
code making it difficult to reverse engineer. Specifically how the contents of your
package are obfuscated is dependent on the type of obfuscation tool you choose to
use. To use this feature, you must already have a code obfuscator plug-in.

A progress bar appears when packaging begins. When the packaging finishes, the
output display indicates where the JAR and JAD files have been placed.

FIGURE 10 Console Output After Packaging

Implementing Support for Code Obfuscation
The J2ME Wireless Toolkit contains a support framework for byte code obfuscators.
It also contains a plug-in for the RetroGuard byte code obfuscator. You can obtain
the retroguard.jar file from http://www.retrologic.com. The
retroguard.jar file must be placed in the Wireless Toolkit’s bin directory:
{j2mewtk.dir}\bin.
Chapter 3 Operating with KToolBar 21

http://www.retrologic.com

If you choose to use a code obfuscator other than RetroGuard, you must implement
the plug-in yourself. See the Wireless Toolkit Basic Customization Guide for an
example of how to implement a code obfuscator plug-in.

Using Class Libraries
KToolBar enables you to build projects from source and resource files. Sometimes
you want to use a class library for which you do not have source files. This section
shows you how to build a project using an external class library.

You should be cautious when including external class libraries. Adding
unnecessary class libraries to a project increases both the time needed to package it
and the size of the resulting MIDlet suite JAR file. A large JAR file increases the
time needed to load the MIDlet suite, and could prevent it from running on devices
with low memory.

Class libraries for use with KToolBar should be compatible with the CLDC and
MIDP APIs and should be packaged in .jar or .zip format. KToolBar provides
ways for you to develop with class libraries, both on a per project and on a global
basis.

External Libraries for a Specific Project
To add class libraries to a KToolBar project, locate the directory containing your
application (refer to TABLE 2 on page 14). The application’s directory contains a
subdirectory, lib. Place the JAR or ZIP file containing the class library into this
subdirectory. For example, if you installed the J2ME Wireless ToolKit in
C:\WTK104 and your application is called ExampleMIDlet, the class library
would go in the directory, C:\WTK104\apps\ExampleMIDlet\lib. When you
build, run, debug, and package your project, the class files in the lib directory are
used.

External Libraries for All Projects
You can also define class libraries to be available for all projects that you develop
with KToolBar. To do this, place the JAR or ZIP files containing the classes in the
subdirectory apps\lib of the directory in which you installed the J2ME Wireless
ToolKit. For example, if you installed the Wireless Toolkit in C:\WTK104, you
would place the class libraries in C:\WTK104\apps\lib. Class libraries in the
apps\lib directory are used for all projects.
22 Wireless Toolkit User’s Guide • June 2002

Note – Class libraries for a particular project can import classes and resources
from any general library as well as specific libraries. Class libraries for projects in
general can only import classes and resources from general class libraries.

Setting Emulator Preferences and Using
Emulator Utilities
You can access the Emulator’s Preferences and Utilities tools through the KToolBar
menu.

To access the Emulator Preferences tool, choose Edit -> Preferences.

FIGURE 11 Accessing Emulator Preferences in KToolBar

To access the Emulator Utilities tool, choose File -> Utilities.

FIGURE 12 Accessing Emulator Utilities on KToolBar

For more information on using the Emulator Utilities and Preferences tools, see
“Preferences and Utilities” on page 51 in Chapter 5, “Working With the Emulator.”
Chapter 3 Operating with KToolBar 23

Customizing KToolBar
KToolBar includes some advanced configuration options. You can use these options
by editing the file {j2mewtk.dir}\wtklib\Windows\ktools.properties. To see
the effects of your changes, restart KToolBar.

Setting the Application Directory
By default, the J2ME Wireless Toolkit stores MIDP applications in directories under
{j2mewtk.dir}\apps. You can change this by adding a line to ktools.properties
of the following form:

kvem.apps.dir: <application_directory>

Any backslash ('\') characters in the directory’s path should be preceded by
another backslash. Also, the directory’s path should not contain any spaces.

For example, to set the application directory to D:\dev\midlets, you would use:

kvem.apps.dir: D:\\dev\\midlets

Setting the Javac Encoding Property
By default, the Java compiler uses the encoding set in the J2SE environment that
you are running. For information on how to override the default source file
encoding, see “Java Compiler Encoding Setting” on page 81 in Appendix C,
“Internationalization.”

Working with Revision Control Systems
Using the filterRevisionControl property, you can configure KToolBar to recognize
and ignore auxiliary files created by the SCCS, RCS and CVS revision control
systems. To do this, include the following line in ktools.properties:

kvem.filterRevisionControl: true

As a result, you prevent KToolBar from treating revision control files as source and
resource files. For example, KToolBar would treat a file named
src\SCCS\s.MyClass.java as being an SCCS revision control file and not a Java
source file.
24 Wireless Toolkit User’s Guide • June 2002

CHAPTER 4

Performance Tuning Applications

You can examine various aspects of the MIDlet applications you created with the
J2ME Wireless Toolkit to identify where you can improve the efficiency and speed
of your MIDlet. The Wireless Toolkit enables you to optimize the performance of
your MIDlet with the following features:

■ Profiler. Enables you to examine the execution time and the frequency of use of
the methods in your application.

■ Memory Monitor. Enables you to examine memory usage in your application.

■ Network Monitor. Lets you monitor transmissions between your device and the
network.

■ Speed Emulation. Enables you to adjust drawing speed to refine graphics
rendering. It also enables you to adjust the speed of byte code execution and
data transfer across the network to give you a sense of how quickly your
application runs on a device.

Note – Turning on multiple performance features simultaneously can adversely
affect the data collected by slowing down application execution. For more accurate
results, try enabling one performance feature per data collection.

Profiling Your Application
You can examine the method execution time with the Profiler utility. The Profiler
collects data from an emulator during runtime. By seeing how much time a method
takes to execute, you can see where potential problems, such as bottlenecks, might
exist in the application.

The Profiler window displays two types of method information:

■ Method relationships shown in a hierarchical list called the Call Graph.

■ Execution time and the number of times a method and its descendants were
called during runtime.
25

Profiling Data Display
In the Call Graph tree, you see folders for top-level methods. Opening a method’s
folder displays the methods called by it. Selecting a method in the tree shows the
profiling information for it and all the methods called by it. Selecting <root>
displays profiling information for all methods in the program.

FIGURE 13 Profiler Window

The table displays rows of methods. For each method, you can see its:

■ Name. The fully qualified name of the method.

■ Count. The number of times the method was called during execution.

■ Cycles. The execution time, in seconds, of a method (does not include the
execution time of methods called by that method).

■ %Cycles. The percentage of time spent on a method’s execution in respect to the
time the entire program ran (does not include the execution time of methods
called by that method).

■ Count With Children. The number of times the method and its descendants were
called during execution.

■ %Count With Children. The percentage time spent running the method and all
of its descendants in respect to the time the entire program ran.
26 Wireless Toolkit User’s Guide • June 2002

You can click on the column titles in the table to sort the display. Clicking on Name
sorts the methods in alphabetical order. Clicking Count, Cycles,%Cycles, Count
with Children, or %Count with Child sorts the information in ascending order.
Clicking on the column title again resorts the information in descending order.

Viewing Profiling Information
To obtain profiling information, follow these steps:

1. From the KToolBar, choose Edit -> Preferences.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences tool and turn
on profiling.

2. In the Preferences dialog box, click the Monitoring tab and check the box to
enable profiling.

3. Click OK in the Preferences window.

4. Run your application and then quit.

When you quit the application, the Profiler window opens displaying information
collected during execution.

Note – The profiling values obtained from an emulation does not reflect actual
values on a real device, even though a real device skin might be used (such as, the
Motorola_i85s).

Saving Profiling Information

To save profiling information:

1. In the Profiler window, choose File -> Save or click Save in the toolbar.

You can also choose File -> Save As to rename a saved file.

2. Type the name of the file in which you want to store the profiling information in
the file chooser.

Examining Saved Information

To examine previously saved profiling data from the Profiler window:

● Click Open in the Profiler window’s toolbar and select the file you want.

To examine previously saved profiling data from the KToolBar:
Chapter 4 Performance Tuning Applications 27

1. Choose File -> Utilities and click Open Session under Profiler.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Utilities tool.

2. Select a previously saved file of profiling data from the file chooser.

The Profiler window opens displaying data from a previous data collecting session.

To examine data for a specific method:

● Click Find below the Call Graph and enter a string for the specific method you
want to examine. Clicking Match Case does a search for the string as typed.
Clicking Wrap returns to the beginning of the method hierarchy to continue the
search.

Examining Memory Usage
Another area to check for optimization is memory usage. The Memory Monitor
Extension feature enables you to see how much memory is used by your
application during runtime and to see a breakdown of the amount of memory
usage per object.

FIGURE 14 Memory Monitor Window
28 Wireless Toolkit User’s Guide • June 2002

Memory Monitor Data Display
The Memory Monitor displays usage information in two tabbed panes:

■ Graph. The Memory Usage graph displays:

■ Current. The current amount of memory used by the application.

■ Maximum. The maximum amount of memory used since program execution
began. Denoted in the graph by a broken red line.

■ Objects. The number of objects in the heap.

■ Used. The amount of memory used.

■ Free. The amount of unused memory available.

■ Total. The total amount of memory available at startup (the sum of Used and
Free).

FIGURE 15 Memory Monitor Graph

■ Objects. The Object Monitor breaks down the information into a table format
that shows you:

■ Name. The name of each class examined for memory usage.
■ Live. The number of instances of an object in the heap.
■ Total. The total number of class objects allocated at startup.
■ Total Size. The total amount of memory used by the class’ live objects.
Chapter 4 Performance Tuning Applications 29

■ Average Size. The average amount of memory used by a class live object with
respect to the total size.

FIGURE 16 Memory Monitor Objects Table

You can click on the column titles in the table to sort the display. Clicking on Name
sorts the classes in alphabetical order. Clicking Live, Total, Total Size, or Average
Size sorts the information in that column from ascending to descending value.

Selecting a class in the Name column displays a hierarchical list of that class’
methods and the percentage of memory used by the objects allocated by that
method and the methods called by it in the pane to the right of the table. You can
click Find to locate a specific method. The Objects table is dynamically updated
during program execution; however, the method list is not. Click Refresh to update
the display of percentage of usage information.

Viewing Memory Usage
To obtain memory usage information, follow these steps:

1. From the KToolBar, choose Edit -> Preferences.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences tool and turn
on memory monitoring.
30 Wireless Toolkit User’s Guide • June 2002

2. In the Preferences dialog box, click the Monitoring tab.

3. Check the Enable Memory Monitor checkbox to turn on memory monitoring.

(Optional) If you want to set the heap size, click the Storage tab in the Preferences
dialog box and enter a value. Acceptable values are between 32Kb and 64 Mbytes.
Setting the heap size is not required to use memory monitoring.

4. (Optional) Check the Excessive GC mode to turn on garbage collection before
any memory is allocated.

This mode keeps memory usage to a minimum. When turned on, garbage
collection is run every time an object is about to be allocated. Use this feature to
determine the required amount of memory at any time during runtime.

5. Click OK in the Preferences dialog box.

6. Run your application.

When execution begins, the Memory Monitor Extension window opens displaying
memory usage as your application runs. You can request to have garbage collection
performed at anytime while the application is running by clicking Run GC in the
Memory Monitor Extension window.

Note – The memory usage values obtained from an emulation does not reflect
actual memory usage on a real device, even though a real device skin might be
used (such as, the Motorola_i85s). The Memory Monitor merely provides you
with possible indicators of excessive memory use for the emulation.

Saving Memory Usage Information

To save the information:

1. In the Memory Monitor window, choose File -> Save or click Save.

You can also choose File -> Save As to rename a saved file.

2. Type the name of the file in which you want to store the memory usage
information in the file chooser.

Examining Saved Information

To examine previously saved information from the Memory Monitor window:

● Click Open Session in the Memory Monitor window’s toolbar and select the file
you want.

To examine previously saved information from the KToolBar:
Chapter 4 Performance Tuning Applications 31

1. From the KToolBar, choose File -> Utilities and click Open Session for Memory
in the Utilities dialog box.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Utilities tool.

2. Select a previously saved file of profiling data from the file chooser.

Monitoring Network Traffic
One of the many uses of a MIDP application is to get or send information through
the internet. By monitoring the network traffic generated by your application, you
can obtain information you might need to improve or fix communication with a
server and optimize network usage. The Network Monitor provides you with the
following features:

■ Support for operating with or without an HTTP or HTTPS proxy
■ Viewing message information

FIGURE 17 Network Monitor Window

Network Monitor Data Display
The Network Monitor displays a list of messages that were sent or received by the
application. Messages are broken down into their main body and subparts, if any.
You can examine the following message information:
32 Wireless Toolkit User’s Guide • June 2002

■ Selecting a message, displays its URL, status information (the protocol type and
version), and the date and time the message was sent or received. The properties
of the message are displayed in key and value pairs in a table format.

You can see the entire contents of a value by choosing that value and viewing it
in the scrollable text field at the bottom of the pane.

FIGURE 18 Message Key and Value Pair

■ Selecting message body displays the hexadecimal values and the text value for
the entire message.

Nonprintable byte code is denoted by a “.” in the text pane.

■ Selecting a message chunk displays the hexadecimal value and text value for
just that portion of the message.

Nonprintable byte code is denoted by a “.” in the text pane.

FIGURE 19 Message Body
Chapter 4 Performance Tuning Applications 33

Note – You can examine messages that are still in the process of being sent.
Incomplete messages are indicated by bold highlighting in the message tree.

Viewing Network Traffic
To turn on network monitoring automatically when your application runs or to
choose a specific proxy type, follow these steps:

1. From the KToolBar, choose Edit -> Preferences.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences tool and turn
on network monitoring.

2. In the Preferences dialog box, click the Monitoring tab.

3. Check one of the protocol types, Enable HTTP Monitoring or Enable HTTPS
Monitoring, to enable monitoring.

4. Click OK in the Preferences dialog box.

The Network Monitor window opens when you start your application.

Saving Message Information
To save the information collected by the Network Monitor:

1. In the Network Monitor window, choose File -> Save or Save As.

You can also choose File -> Save As to rename a saved file.

2. Type the name of the file in which you want to store the memory usage
information in the file chooser.

Examining Saved Messages

To examine previously saved message data from the Network Monitor window:

● Choose File -> Open and select the file you want from the file chooser.

To examine previously saved message information from the KToolBar:

1. From the KToolBar, choose File -> Utilities and click the Network Monitor
button in the Utilities dialog box.

The Network Monitor window opens.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Utilities tool.
34 Wireless Toolkit User’s Guide • June 2002

2. Choose File -> Open and choose the message file to examine from the file
chooser.

Saving a Networking Session
To save a networking session:

● In the Network Monitor, choose File -> Save or Save As and type a file name in
which to save your messages in the Save dialog box.

Clearing the Message Tree
To remove the list of message in the message tree:

● Choose Edit -> Clear or click Clear in the Network Monitor toolbar.

Filtering Messages
To examine a specific set of messages, you can set filters in the Network Monitor.
Only those messages that fall within the filter settings are displayed in the message
tree.

1. Choose Edit -> Filter Settings or click the Filter Settings button in the toolbar.

2. Change one or all of the filter settings in the Message Filter dialog box:

■ Select the protocol type to examine, All, HTTP, or HTTPS in the Protocol text
field.

■ Type the URL for the messages you want to see in the URL text field.

■ Type the status type of message you want to examine, in the Status Line text
field.

■ Type the specific header in the Header Text text field.

■ Type a character string for the specific text in the body of the messages you
want to examine in the Body Text text field.

Disabling Filtering

To disable message filtering so that all messages are displayed:

● Click the Filter checkbox in the Network Monitor’s button bar.
Chapter 4 Performance Tuning Applications 35

Sorting Messages
To arrange the messages in the message tree in a particular order:

● Open the Sort By combo box (click the Down arrow) and select one of the sort
criteria:

■ Time. Messages are sorted in chronological order of time sent or received.

■ URL. Messages are sorted by URL address. Multiple messages with the same
address are sorted by time.

■ Connection. Messages are sorted by communication connection. Messages
using the same connection are sorted by time. This sort type enables you to
see messages grouped by requests and their associated responses.

Viewing Messages
To view a message by either its URL or status line:

● Select URL or Status Line from the Show By combo box.

Messages in the tree are displayed by either their URL site or their status
information.

Managing Device Speed
If the application you develop has a graphical user interface(GUI), the time
required to draw the GUI on the screen is critical to the overall usability of the
application. Another critical time factor is knowing the speed at which your
application runs on a device. The VM emulation speed approximates the slower
running speed of an application on a device. How quickly an application is able to
transmit information to the network is another performance factor The Wireless
Toolkit lets you modify both graphic speed emulation, VM speed emulation, and
the speed of the network throughput.

The intent of the speed emulation features is to enable you to scale down the
performance of some of the emulator subsystems to better reflect performance on a
real device. Developing the application in a slower performance environment
enables you to monitor and optimize the code of low-end devices. It is not the
purpose of the speed emulation features to accurately emulate a specific device.
36 Wireless Toolkit User’s Guide • June 2002

FIGURE 20 Performance Settings

Setting Performance Parameters
To adjust drawing and refresh speeds:

1. Choose Edit -> Preferences, click the Performance tab and adjust the graphic
rendering and repaint rates.

In the Performance tabbed pane, you can change one or more performance
parameters. To optimize GUI display capabilities, you should adjust both the
Graphics primitive latency speed and the Refresh mode:

■ Graphics primitive latency. The span of time in milliseconds for a graphic
element to appear once the request is sent.

■ Display refresh mode. The number of times per second a device’s screen is
updated. There are three refresh modes: Double Buffer, Immediate, and
Periodic.

Double Buffer mode implements double buffering where a graphic is first
rendered to an offscreen buffer and then copied to the screen. Immediate
mode renders the graphic directly to the screen. Periodic mode lets you set
the frequency in frames per second that the screen is refreshed.
Chapter 4 Performance Tuning Applications 37

2. Click Ok in the Preferences dialog box and run your application.

Vary the latency value and the Refresh mode to find the settings that produce the
fastest rendering with the least amount of flickering in your application.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences tool and set the
graphic performance parameters.

Setting VM Speed Parameters
When running an emulation of a MIDlet, you cannot get an accurate demonstration
of real time application execution speed. The emulation runs much faster than an
application on an actual device. You can, however, adjust the VM speed emulation
in the Wireless Toolkit to approximate the slower speed of a device on which the
application might run.

Note – Setting the VM speed parameters does not emulate real device speed, even
though a real device skin might be used (such as, the Motorola_i85s).

To set the VM speed emulation, which is the amount of Java byte code that is
executed per second:

1. Choose Edit -> Preferences and click the Performance tab.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences tool and set the
VM speed parameters.

2. Click the Enable VM speed emulation checkbox and move the slider to the
desired rate of speed.

3. Click OK in the Preferences dialog box and run your application.

Setting Network Speed Parameters
Sometimes an application’s performance is hindered by the speed of the network.
To see how your application performs on a slow network, you can vary the
network speed parameter. To set the rate at which the application transmits
information to the network:

1. Choose Edit -> Preferences and click the Performance tab.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences tool and set the
network speed parameters.
38 Wireless Toolkit User’s Guide • June 2002

2. Click the Enable network throughput emulation checkbox and select the desired
rate of speed from the combo box.

3. Click OK in the Preferences dialog box and run your application.

Note – Setting the network throughput speed does not emulate actual network
transmission speed.
Chapter 4 Performance Tuning Applications 39

40 Wireless Toolkit User’s Guide • June 2002

CHAPTER 5

Working With the Emulator

The Emulator shows, on your computer, how your MIDP applications operate on a
variety of mobile devices. Consequently, you can test your applications using the
same platform you use to develop them, and defer testing on real devices until
later in the development process.

The Emulator supports testing with several key features:

■ A variety of devices. The Emulator can simulate several devices that take on a
variety of form factors: cell phones, pagers, and palmtops. This helps you learn
what type of experience users can expect and verify the portability of your
application across different devices.

■ Tracing and debugging capabilities. The Emulator supports run-time logging of
various events, such as garbage collection, class loading, method calls, and
exceptions. You can also perform source-level debugging with an IDE while an
application runs in the Emulator.

■ Performance tuning. The Emulator enables you to collect information that you
can examine to optimize the performance of your MIDP applications.
Performance tuning utilities include profiling methods and monitoring memory
usage and network traffic. Also included is the ability to adjust the speed
settings for graphic rendering and refreshing as well as VM speed emulation
and network throughput. See the chapter, Chapter 4, “Performance Tuning
Applications” for details on using the performance tools.

It must be emphasized that having an Emulator does not completely free you from
testing on your target devices. The Emulator does have some limitations:

■ Accuracy of emulation. The Emulator can only approximate a device’s user
interface, functionality, and performance. For example, the Emulator cannot
simulate processing speed, so an application may run faster or slower on a
target device than it does on the Emulator.

■ Application management. The Emulator includes a sample implementation of
an application manager, which supports the installation, maintenance, and
removal of applications on a device. However, this sample implementation does
not emulate any application manager in particular, as the behavior of
application managers varies from device to device.
41

Example Devices
The J2ME Wireless Toolkit includes emulations of various example devices to help
you test the portability of your application. The examples possess a range of
displays and features found in mobile information devices, and they all support
the MIDP specification.

This section describes the devices in more detail, and how to input text on these
devices. For information about how to add more device definitions to the Emulator,
see the J2ME Wireless Toolkit Basic Customization Guide, which comes with the J2ME
Wireless Toolkit.

Device Characteristics
Some of the emulated devices, such as DefaultColorPhone, are generic examples
of devices, whereas others, such as Motorola_i85s, approximate real devices that
implement MIDP. The following table shows in more detail how the emulated
devices differ.

TABLE 3 Example Devices

Tag Description

DefaultColorPhone Generic telephone with a color display.

DefaultGrayPhone Generic telephone with a gray-scale display.

MinimumPhone Generic telephone with minimum display capabilities.

RIMJavaHandheld RIM device from Research In Motion Ltd.

Motorola_i85s Motorola i85s telephone from Motorola, Inc.

PalmOS_Device Palm OS personal digital assistant from Palm, Inc. (The
emulation uses the Palm OS Emulator from Palm, Inc.)

TABLE 4 Selected Device Characteristics

Device Tag
Display
Resolution Color Support

Input
Mechanism(s)

Number of
Soft Buttons Special Keys

DefaultColorPhone 96x128 256 colors ITU-T keypad 2

DefaultGrayPhone 96x128 256 shades of gray ITU-T keypad 2

MinimumPhone 96x54 Black & white ITU-T keypad 0 BACK, MENU
42 Wireless Toolkit User’s Guide • June 2002

The emulated devices also differ in the ways they map game actions (UP, DOWN,
LEFT, RIGHT, FIRE, A, B, C and D) and abstract commands.

In general, the MIDP implementation provided with the J2ME Wireless Toolkit
works on all the example devices. However, some MIDP UI components, such as
javax.microedition.lcdui.DateField, are unusable on devices with smaller
displays than those of the DefaultColorPhone and DefaultGrayPhone.

The following sections describe in more detail how each of the devices work.

DefaultColorPhone and DefaultGrayPhone

The DefaultColorPhone device is a generic device representing a MIDP-enabled
cellular phone with a color screen. The DefaultGrayPhone is identical in all
aspects except for its screen, which is grayscale.

Motorola_i85s 111x100 Black & white ITU-T keypad 2 MENU

RIMJavaHandheld 198x202 Black & white QWERTY
keyboard

0 MENU

PalmOS_device Variable,
usually
160x160

Variable: Black &
white up to 16-bit
color

Graffiti and
hard buttons

0 MENU,
HOME

TABLE 4 Selected Device Characteristics

Device Tag
Display
Resolution Color Support

Input
Mechanism(s)

Number of
Soft Buttons Special Keys
Chapter 5 Working With the Emulator 43

FIGURE 21 Default Color Phone Device

The interface for both devices includes:

■ Buttons for the digits from 0 to 9, as well as pound and asterisk keys.
■ Two soft buttons.
■ A directional keypad, including a SELECT button in the center.
■ SEND, END and CLEAR buttons.

Command menus are displayed by clicking the soft button Menu when it is
displayed. The same soft button is used to hide the menu. The other soft button can
still be used while the menu is displayed. The keys 7, 9, pound and asterisk are
used for the game actions A, B, C and D. SELECT is used for the game action FIRE.

MinimumPhone

The MinimumPhone device represents the least capable device on which a MIDP
application can be expected to run. Use this device when testing the adaptability of
your application to small displays, and be prepared for the possibility that your
application may not work as well on this device.
44 Wireless Toolkit User’s Guide • June 2002

FIGURE 22 Minimum Phone Device

The device interface includes:

■ Buttons for the digits from 0 to 9, as well as pound and asterisk keys.

■ Four directional arrow keys (UP and DOWN are represented as being on the top
and the bottom of a roller between the left and right arrow keys).

■ A SELECT button (the center of the roller).

■ A BACK button, used for MIDP abstract commands of type BACK

■ A MENU button, used to show and hide the command menu.

■ SEND and END buttons.

Command menus are displayed and hidden with the MENU key. The BACK key
retains the same meaning when the command menu is displayed as when it is not.
The keys 7, 9, pound and asterisk are used for the game actions A, B, C and D.
SELECT is used for the game action FIRE.
Chapter 5 Working With the Emulator 45

Motorola_i85s

The Motorola_i85s device emulates many but not all aspects of the i85s
telephone from Motorola, Inc. One aspect that the emulation does not represent
accurately is the look-and-feel of the screen UI; what you see is based on the MIDP
reference implementation and not on the Motorola MIDP implementation.

FIGURE 23 Motorola i85s Device

The device interface includes:

■ Buttons for the digits from 0 to 9, as well as pound and asterisk keys.

■ A directional keypad.

■ Two soft buttons.

■ A MENU button.

■ A SEND button, that functions the same as the SELECT button on the devices
described above.

The END button is not used on the Motorola_i85s device.
46 Wireless Toolkit User’s Guide • June 2002

The behavior of the MIDP command menu is slightly different for Motorola_i85s
than for the other devices. When the MENU button is pressed, the soft button
labels are changed to BACK (for leaving the menu) and SELECT (for choosing a
menu item). The keys 7, 9, pound and asterisk are used for the game actions A, B,
C and D. SELECT is used for the game action FIRE.

RIMJavaHandheld

The RIMJavaHandheld device emulates many but not all aspects of the RIM Java
Handheld device from Research In Motion, Limited. One aspect that the emulation
does not represent accurately is the look-and-feel of the screen UI; what you see is
based on the MIDP reference implementation and not on the RIM MIDP
implementation.

FIGURE 24 RIM Java Handheld Device

This device has the following keys:

■ Keys for the letters from A to Z in a QWERTY keyboard, the digits from 0 to 9,
and various other symbols.

■ UP and DOWN directional keys, on the top and bottom of the roller on the top
right of the device.

■ A MENU key, in the center of the roller.
Chapter 5 Working With the Emulator 47

■ A BACK key, below the roller on the right hand side of the device

■ An ENTER key.

■ A SPACE key that also functions as a SELECT key.

■ A BACKSPACE key.

■ CAPS and ALT keys for changing the effect of key presses when entering text.

The NUM and DEL keys are not used in this emulation.

The keys V and B are used as left and right directional arrows. The keys Q, W, E
and R are used for the game actions A, B, C and D. SPACE is used for the game
action FIRE.

PalmOS_Device

The PalmOS_Device emulation uses the Palm OS Emulator (POSE) from Palm,
Inc. to emulate devices running Palm OS. (For instructions on obtaining POSE and
configuring it to work with the J2ME Wireless Toolkit, see Chapter 2, “Installing the
Wireless Toolkit.”)

FIGURE 25 Palm OS Device

The PalmOS_Device emulation has a user interface substantially different from
that of the other devices:

■ The Graffiti handwriting recognition system and the native Palm keyboard are
used for text input.
48 Wireless Toolkit User’s Guide • June 2002

■ The screen is touch sensitive; it reacts to mouse clicks.

■ The up and down arrow keys, together with the buttons to their left and right,
are used for navigation.

■ The leftmost and rightmost buttons on the device both function as SELECT and
as the game action FIRE.

■ Command menus are activated by clicking (tapping) the menu icon on the lower
left of the device's screen.

■ The four game actions are performed by clicking on each of the four corners of
the Graffiti text input area.

To configure the user interface, use the J2ME Wireless Toolkit Preferences tool. (See
“PalmOSEmulator Preferences” on page 56.) Alternatively, you can select Java
Preferences from the Options menu when running a MIDP application on POSE.
(For more information, consult the MIDP for Palm OS documentation, available
through http://java.sun.com/products/midp/palmOS.html.)

Inputting Text
When a MIDP application needs character input from the user, it displays a text
box. For each of the bundled devices, with the exception of PalmOS_Device, you
can enter text into this box using the buttons in the interface of the device or the
keyboard of your computer.

See Appendix C, “Internationalization” for information about using different fonts
with the Emulator.

Using the Device to Input Text

You can use the keypad of the DefaultColorPhone, DefaultGrayPhone,
MinimumPhone, Motorola_i85s, and RIMJavaHandheld devices to input text.
When you begin entering text in this manner, the device screen displays a text box.

The functions of the pound ('#') and asterisk ('*') keys vary depending on the type
of input being requested:
Chapter 5 Working With the Emulator 49

http://java.sun.com/products/midp/palmOS.html

See the API documentation for javax.microedition.lcdui.TextField for
details on MIDP input constraints.

Using the Keyboard to Input Text

You can also enter text in a MIDP application using the keyboard of your computer.
When you begin entering text from the keyboard, the image of the device's screen
is replaced by an area in which you can enter text.

When you have finished entering text, press Enter on the keyboard. The Emulator
returns to the J2ME application.

Note – You can also switch to and from keyboard input mode using the device’s
SELECT key.

Application Demos
The toolkit comes with the following demo applications, which can all be run in
the Emulator:

■ demos, a set of seven MIDlets:

■ Colors, a small MIDlet demonstrating the use of colors.
■ Properties, a MIDlet providing information about the VM and device.
■ Http, a small MIDlet demonstrating the use of HTTP connections.
■ FontTestlet, a small MIDlet demonstrating the use of fonts.
■ Stock, a client-server stock ticker.
■ Tickets, a concert ticket bidding system.
■ ManyBalls, a small MIDlet demonstrating UI and threads with bouncing

balls.

■ games, a set of three MIDlets:

TABLE 5 Pound ('#') and Asterisk ('*') Key Functions

Input type Pound key function Asterisk key function

Phone number Pound ('#') Asterisk ('*')

Numeric Minus sign ('-') None

All other types Switches input mode
between upper case,
lower case, numeric and
symbol mode.

Space
50 Wireless Toolkit User’s Guide • June 2002

■ TilePuzzle, a word shuffling game.
■ WormGame, a graphical action game.
■ PushPuzzle, a puzzle game.

■ PhotoAlbum, a single MIDlet demonstrating graphics support.

■ UIDemo, a single MIDlet demonstrating MIDP high-level UI widgets.

The demo applications are all written using the MIDP APIs but they are not all
portable across all the devices. They have been optimized to run on the
DefaultColorPhone and the DefaultGrayPhone device types. Their
appearance degrades when run on the MinimumPhone device type. For example,
the PushPuzzle game is portable, but the TilePuzzle game is not, and the Stock and
Tickets applications primarily make use of high-level GUI components.

For information on how to demonstrate your MIDlet applications for non-
development purposes, see Appendix B, “MIDlet Demonstration.”

Selecting a Default Device
If you do not specify which device to emulate, the Emulator uses the default
device, DefaultGrayPhone, when you run a MIDlet. To change the default
emulated device:

1. From the Windows Start menu, select Programs -> J2ME Wireless Toolkit 1.0.4 ->
Default Device Selection.

The Default Device Selection dialog appears with a menu of devices.

2. Select the device from the menu, and press OK.

The next time you run a MIDlet, it will be emulated on the device you have chosen.

Preferences and Utilities
This section describes the Preferences and Utilities tools, which are used to
configure the device emulators and run utilities specific to those emulators.

You can use the Preferences and Utilities tools from within a development
environment, such as KToolBar. You can access the Utilities tools from the
KToolBar’s File menu. You can access the Preferences tools from the KToolBar’s
Edit menu.

Alternatively, you can use the tools from the Microsoft Windows Start menu.To
start the Preferences tool from the Microsoft Windows Start menu:

● Choose Programs -> J2ME Wireless Toolkit 1.0.4 -> Preferences.
Chapter 5 Working With the Emulator 51

To run the Utilities tool:

● Choose Programs -> J2ME Wireless Toolkit 1.0.4 -> Utilities.

If you are using the Wireless Toolkit with an IDE, see the documentation on the
IDE you are using for information on how to access the Preferences and Utilities
tools.

Device Categories
The Preferences and Utilities tools divide the emulated devices into two categories:

■ DefaultEmulator. This category includes the devices DefaultColorPhone,
DefaultGrayPhone, MinimumPhone, RIMJavaHandheld and
Motorola_i85s.

■ PalmOSEmulator. This category has only one device, the PalmOS_Device.

The following sections describe how the available preferences and utilities for these
categories.

DefaultEmulator Preferences
Use the DefaultEmulator Preferences dialog box to configure the
DefaultEmulator devices.
52 Wireless Toolkit User’s Guide • June 2002

FIGURE 26 DefaultEmulator Preferences Dialog

Setting the Web Proxy

If you want to run Java applications that require Web connections, and if such
connections can be made only through a proxy server (when the Web server is on
the other side of a firewall, for example), then you need to configure the Emulator
with proxy server information.

To specify proxy information for HTTP connections:

1. Choose Edit -> Preferences and click the Network Configuration tab.

2. Type the name of the HTTP proxy server and its port number in the HTTP text
fields.

3. Click Ok in the Preferences dialog box.

To specify proxy information for HTTPS connections:
Chapter 5 Working With the Emulator 53

1. Choose Edit -> Preferences and click the Network Configuration tab.

2. Type the name of the HTTPS server and its port number in the Security Server
and Port text fields.

3. Click Ok in the Preferences dialog box.

If you are unsure about the correct proxy settings, ask your system administrator.

Choosing an HTTP Version

The Wireless Toolkit provides you with two versions of HTTP to work with.
Version 1.0 is provided for development purposes only. The MIDP specification
requires that HTTP version 1.1 is supported. Selecting version 1.0 in the Network
Configuration tab of the Preferences dialog box disables some of the version 1.1
features, such as chunking messages and providing a persistent connection to
enable you to work with servers that do not support version 1.1.

Setting the Heap Size

To specify the amount of heap memory to make available to MIDP applications:

1. Choose Edit -> Preferences and click the Storage tab.

2. Type a value in the Heap Size field (in kilobytes).

The default value is 500 kilobytes.

Setting the RMS Directory

You can specify a Record Management System (RMS) directory prior to running
your MIDlet. To set the directory:

1. Choose Edit -> Preferences and click the Storage tab.

2. Type the name of the directory in which you want to store information the next
time you activate a MIDlet.

The directory is created under the appdb directory. A database (.db) file is created
and placed in the specified directory. The default directory location is the appdb.
You must create a unique directory for each session you want to save.

Enabling Tracing

You can configure the Emulator to trace certain types of events:

■ Garbage collection. The trace output indicates when garbage collection occurs,
as well as the number of bytes collected and the total heap size.
54 Wireless Toolkit User’s Guide • June 2002

■ Class loading. The trace output displays the name of every non-system class as
it is created and initialized.

■ Method calls. The trace output has an entry for each method call, recording the
name of the method and the object on which it was invoked. Note that this
output is very verbose and may cause your application to run slowly.

■ Exceptions. The trace output includes a record of every exception that is thrown,
including those that are thrown and caught by system classes.

To enable (or disable) tracing of any of these events, check (or uncheck) the
corresponding boxes in the Trace tab in the Preferences dialog box.

DefaultEmulator Utilities
You can use the DefaultEmulator Utilities window to run the DefaultEmulator’s
utilities.

FIGURE 27 Default Emulator Utilities Window
Chapter 5 Working With the Emulator 55

Cleaning Device Storage

The DefaultEmulator simulates a client device’s local storage by maintaining
small database files on your computer. To erase these database files, click Clean
Database.

Monitoring Memory Usage

You can see where a bottleneck in your application’s performance might be
occurring by reviewing its memory usage during runtime. The Memory Monitor
provides several kinds of memory usage information, such as the amount of
memory that live class objects use during program execution. For information on
how to use the Memory Monitor, see “Examining Memory Usage” on page 28 in
Chapter 4, “Performance Tuning Applications.”

Profiling Methods

The Profiler collects data from the DefaultEmulator during runtime. By seeing how
much time a method takes to execute, you can see what areas of your application
could be slowing down execution time. For information on examining profiling
information, see “Profiling Your Application” on page 25, in Chapter 4,
“Performance Tuning Applications.”

Monitoring Network Traffic

You can use the DefaultEmulator to simulate the transmission of messages to
and from a device and the internet. For information on how to use the Memory
Monitor, see “Monitoring Network Traffic” on page 32 in Chapter 4, “Performance
Tuning Applications.”

PalmOSEmulator Preferences

You can use the PalmOSEmulator Preferences to configure the PalmOSEmulator
devices.
56 Wireless Toolkit User’s Guide • June 2002

FIGURE 28 PalmOSEmulator Preferences Window

Setting the Web Proxy

Like the DefaultEmulator, the PalmOSEmulator lets you specify an HTTP
proxy. (The PalmOSEmulator does not, however, use HTTPS proxies.)

To specify proxy information for HTTP connections, enter the name of the server
and its port using the HTTP Address of Proxy Server and Port fields.

If you are unsure about the correct proxy settings, ask your system administrator.

Setting the POSE Location

The J2ME Wireless Toolkit needs the PalmOSEmulator (POSE) in order to emulate
a MIDP application running on a Palm OS device. To specify where the POSE is
installed on your system, press Browse beside the POSE Location text field and use
the file chooser to find and select the POSE executable.
Chapter 5 Working With the Emulator 57

Showing the Heap Status

To set the Emulator to show the status of the heap memory before running a
MIDlet, check the Show Heap Status box in the Preferences dialog.

Saving Application Output

To save the output of the Emulator for later viewing, check the Save Output box in
the Preferences dialog. Any data written to the standard output stream and
standard error stream appears in the files STDOUT.txt and STDERR.txt; the
placement of these files depends on how you run POSE. For more information,
consult the MIDP for Palm OS documentation, available through
http://java.sun.com/products/midp/palmOS.html.

Enabling Double Buffering

For the PalmOS_Device, output from a MIDlet to the screen is not buffered, so the
screen is updated every time the application draws a line or writes some text. To
enable buffering, check the Double Buffer box in the Preferences dialog.

Hiding the Soft Buttons

Soft buttons are displayed above the writing area. To remove the buttons, so that
there is more space for the application, check the Hide Soft Buttons box in the
Preferences dialog. (You can use the application’s menus to do anything you might
do with a soft button.)

Setting the Graphics Depth

To set the number of colors used to display applications, select a value from the
Graphics Depth combo box. The range of color settings spans from black and white
to millions of colors.

Showing the Keypad

Use the Keypad Kind menu to specify which keys, if any, should be placed on the
screen. Your options are:

■ Game Buttons. Hides the controls. You control the application using the buttons
and graffiti area on your Palm OS device. This is the default setting.

■ Small. Displays just the arrow keys and SELECT/FIRE button along one side of
the screen.

■ Full. Displays a phone pad, arrow keys, SELECT/FIRE button, and game actions
(A, B, C, D) along one side of the screen.
58 Wireless Toolkit User’s Guide • June 2002

http://java.sun.com/products/midp/palmOS.html

If you select the Small or Full keypad, then use the Keypad Place menu to place the
keypad on the left or right side of the screen.

For more information, see the MIDP for Palm OS User’s Guide.

PalmOSEmulator Utilities
You can use the PalmOSEmulator Utilities to generate Palmpilot resource files
(PRC).

FIGURE 29 PalmOSEmulator Utilities Window

Generating PRC Files

PRC is the file format used to transfer a packaged application from a desktop
computer to a Palm OS device. To generate a PRC file from your MIDP application:

● Choose File -> Utilities, select PalmOSEmulator and click Generate PRC. The
MIDP for Palm OS PRC Converter appears. (For more information, see the MIDP
for Palm OS User’s Guide.)
Chapter 5 Working With the Emulator 59

60 Wireless Toolkit User’s Guide • June 2002

CHAPTER 6

Operating From the Command Line

This chapter describes how to operate the J2ME Wireless Toolkit tools from the
command line and details the steps required to build and run an application.

Preliminary Checks
Before building and running an application from the command line, type
java -version at the command line to verify that the J2SE bin directory, for

example, C:\jdk1.3\bin, is in your PATH. The reply should show that the
version of the J2SE SDK that you are using is version 1.3.0 or higher.

For more examples, see the files build.bat and run.bat in the bin\ directories
of the demonstration applications. You can find these files under the
{j2mewtk.dir}\apps\{demo_name}\bin\ directory where {j2mewtk.dir} is the
installation directory of the J2ME Wirless Toolkit and {demo_name} is the name of
one of the demo applications.

Accessing Preferences and Utilities
To access the Preferences and Utilities tools discussed in Chapter 5, “Working With
the Emulator” and Chapter 4, “Performance Tuning Applications” from the
command line, type the following commands at the prompt:

{j2mewtk.dir}\bin\prefs.exe

{j2mewtk.dir}\bin\utils.exe
61

Compiling Class Files
J2ME class files are compiled from Java source files ising the javac compiler from
the J2SE SDK. Before compiling, you should verify that the following
subdirectories exist and create them if necessary:

1. tmpclasses. A directory to hold unverified classe.

2. classes. A directory to hold verified classes.

To compile an application, use the javac command as follows (all on one line):

javac [options] -bootclasspath {j2mewtk.dir}\lib\midpapi.zip <files>

Arguments
<files>

A list of one or more source files to compile, separated by spaces.

Options
-d <output directory>

Specify the directory into which the compiler should output classes. (This directory
must exist before compiling.)

Note – If you are using the compiler included with the Java 2 SDK, Standard
Edition 1.4, use the -target 1.1 option when compiling your source files. If you
do not do this, you will have problems preverifying your compiled classes.

Example

To compile all the source files located in the src directory (but not its
subdirectories) and place them into the directory tmpclasses, use the following
command:

javac -d tmpclasses -bootclasspath c:\wtk104\lib\midpapi.zip
-classpath tmpclasses;classes src*.java

The tmpclasses directory is used to store the compiled classes while they are not yet
verified. After verification has been performed, the preverifier stores the classes in
the classes directory. For more information about the javac command, see the J2SE
SDK documentation.
62 Wireless Toolkit User’s Guide • June 2002

Preverifying Classes
To preverify application classes, use the preverify command that comes with the
J2ME Wireless Toolkit. The synatx for the preverify command is as follows:

preverify [options] <files | directories>

Arguments
<files | directories>

A list of one or more files or directories to preverify, separated by spaces.

Options
-classpath <classpath>

Specify the directories or JAR files (given as a semicolon-delimited list) from which
classes are loaded.

-d <output directory>

Specify the directory into which the preverifier should output classes. (This
directory must exist before preverifying.) If this option is not used, the preverifier
places the classes in a directory called output.

Example

Following the example in the previous section, after compiling the source files, use
the following command:

preverify -classpath c:\wtk104\lib\midpapi.zip tmpclasses -d
classes

As a result of this command, pre-verified versions of the class files are placed in the
classes directory.

Packaging a MIDlet suite
To package a MIDlet suite, you must first create a manifest file, then create an
application JAR file, and finally, an application JAD file.
Chapter 6 Operating From the Command Line 63

Creating a Manifest File
Create a manifest file containing the appropriate attributes as specified in
Appendix A, “MIDlet Attributes.”

You can use any plain text editor to create the manifest file. A manifest might have
the following contents, for example:

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

Creating an Application JAR File
Create a JAR file containing the manifest as well as the suite’s class and resource
files.

● To create the JAR file, use the JAR tool that comes with the J2SE SDK. The
syntax is as follows:

jar cfm <file> <manifest> -C <class_directory> . -C <resource_directory> .

Arguments

<file>

The JAR file to create.

<manifest>

The manifest file for the MIDlets.

<class_directory>

The directory containing the application’s classes.

<resource_directory>

The directory containing the application’s resources.

Example

To create a JAR file named MyApp.jar whose classes are in the classes directory
and resources are in the res directory, use the following command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .
64 Wireless Toolkit User’s Guide • June 2002

Creating an Application JAD File
Create a JAD file containing the appropriate attributes as specified in Appendix A,
“MIDlet Attributes.” You can use any plain text editor to create the JAD file. This
file must have the extension .jad.

Note – You need to set the MIDlet-Jar-Size entry to the size of the JAR file created
in the previous step.

Example

A JAD file might have the following contents, for example:

MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601

Running the Emulator
You can run the Emulator from the command line using the emulator command.
Your current directory should be the bin\ subdirectory of the directory where you
installed the Wireless Toolkit, for example, C:\WTK104\bin. The syntax for the
emulator command is as follows (all on one line):

emulator [options]

General Options
-help

Display a list of valid options.

-version

Display version information about the emulator.

-Xquery

Print device information on the standard output stream and exit immediately. The
information includes, but is not limited to, device name, device screen size, and
other device capabilities.
Chapter 6 Operating From the Command Line 65

Running Options
-Xdevice:<device name>

Run an application on the device specified by the given device name. (For a list of
device names, see TABLE 3 on page 42 in Chapter 5, “Working With the Emulator.”

-Xdescriptor:<descriptor file>

Run an application using the given descriptor file.

-classpath <classpath>

Specify the classpath for libraries required to run the application.

-D<runtime property>

Set the HTTP and HTTPS proxy servers. Valid properties include:

com.sun.midp.io.http.proxy=<proxy host>:<proxy port>

Tracing and Debugging Options
-Xverbose:<trace options>

Display trace output, as specified by a list of comma-separated options:

classes

Trace class loading.

gc

Trace garbage collection.

all

Use all tracing options.

-Xdebug

Enable runtime debugging. The -Xrunjdwp option must also be used.
66 Wireless Toolkit User’s Guide • June 2002

-Xrunjdwp:<debug settings>

Start a JDWP debug session, as specified by a list of comma-separated debug
settings. The -Xdebug option must also be used. Valid debug settings include:

transport=<transport mechanism>

The transport mechanism used to communicate with the debugger. The only
transport mechanism supported is dt_socket.

address=<host:port>

The transport address for the debugger connection. You can omit providing a
host. If host is omitted, localhost is assumed to be the host machine.

server=y|n

Start the debug agent as a server. The debugger must connect to the port
specified. The possible values are y and n. Currently, only y is supported (the
Emulator must act as a server).

Emulator Preferences Setting Option
-Xprefs:<filename>

Set the Emulator preferences to the values in the given property file. The filename
you provide should be the full path name of a property file, which is used to
override the values in the preferences window. The property file can contain the
following properties:

TABLE 6 Emulator Preferences Properties List

Property Name Property Description and Legal Values

http.version Network Configuration > HTTP Version
Value: HTTP/1.1 | HTTP/1.0

kvem.excessivegc Monitoring > Excessive GC Mode
Value: true | false

kvem.memory.monitor.enable Monitoring > Enable memory monitor
Value: true | false

kvem.netmon.http.enable Monitoring > Enable HTTP monitoring
Value: true | false

kvem.netmon.https.enable Monitoring > Enable HTTPS monitoring
Value: true | false

kvem.profiler.enable Monitoring > Enable profiling
Value: true | false

netspeed.bitpersecond Performance > bits/sec combo box
Value: integer
Chapter 6 Operating From the Command Line 67

netspeed.enableSpeedEmulation Performance>Enable networkthroughput
emulation
Value: true | false

screen.graphicsLatency Performance > Graphics primitives latency
Value: integer

screen.refresh.mode Performance > Display refresh (radio button)
Value: default | immediate | periodic

screen.refresh.rate Performance > Display refresh (slider)
Value: integer

vmspeed.bytecodespermilli Performance > Enable VM speed
emulation (check box)
Value: integer

vmspeed.enableEmulation Performance > Enable VM speed emulation
(slider)
Value: true | false

storage.root Storage > Storage root directory
Value: String (relative path to appdb)

storage.size Storage > Storage size
Value: integer

TABLE 6 Emulator Preferences Properties List

Property Name Property Description and Legal Values
68 Wireless Toolkit User’s Guide • June 2002

Java Application Manager (JAM) Options
-Xjam[:<argument>]

Run an application using the example Java Application Manager. When no
argument is supplied, the graphical JAM is launched, as described in “Running a
Remotely-Deployed Application Using the Java Application Manager (JAM)” on
page 72 in Chapter 7, “Testing Application Provisioning.” Possible values for
<argument> include:

install=<url>

Install an application from a URL.

run=<name | index>

Run a previously installed MIDlet, as specified by its storage name or index. If no
application is specified, the graphical JAM will be run.

remove=<name | index>

Remove a previously installed MIDlet, as specified by its storage name or index. If
no application is specified, the graphical JAM will be run.

transient=<url>

Install an application from a URL, run it, and then remove it. (Consider this option
a shortcut for launching the emulator three separate times to install, run and then
finally remove the application.)

The URL must point to the application's descriptor file.

list

Present a detailed list of all applications installed.

storageNames

Present the names of all applications installed, in an easy-to-parse format.

Examples

Here are some examples of running the Emulator from the command line:

● To run the application described by the file
c:\wtk104\apps\example\bin\example.jad, use the following command:

emulator -Xdescriptor:C:\J2MEWTK\apps\example\bin\example.jad

● To run the PhotoAlbum MIDlet, whose classes are in the directory classes/,
using the DefaultColorPhone device, use the following command:

emulator -Xdevice:DefaultColorPhone -classpath classes
example.photoalbum.PhotoAlbum

● To run the PhotoAlbum MIDlet, whose classes are in the directory classes/,
tracing garbage collection and class loading, use the following command:

emulator -Xverbose:gc,class -classpath classes
example.photoalbum.PhotoAlbum
Chapter 6 Operating From the Command Line 69

● To run the application described by example.jad and wait for a connection
from a remote debugger on port 5000, use the following command:

emulator -Xdebug
-Xrunjdwp:transport=dt_socket,address=<localhost>:5000, server=y
-Xdescriptor:example.jad

Where localhost is the name of the machine on which the debugger is run or you
can specify just the port number without providing a <localhost> name.
70 Wireless Toolkit User’s Guide • June 2002

CHAPTER 7

Testing Application Provisioning

The document, "Over The Air User Initiated Provisioning Recommended Practice
for the Mobile Information Device Profile," describes how MIDlet suites can be
deployed over-the-air (OTA), and the functions that a device should provide to
support such deployments. You can obtain this document at
http://java.sun.com/j2me/docs/.

The MIDP implementation of the J2ME Wireless Toolkit’s Default Emulator
emulates the device behavior during the provisioning process. You can use this
functionality to test and demonstrate the full provisioning process of the MIDlet
suites from the server to the device. This chapter explains the different steps that
are required to perform this process.

Deploying Applications on a Web
Server
To deploy a MIDP application remotely on a Web server:

1. Change the JAD file’s MIDlet-Jar-URL property to the URL of the JAR file.

This URL must be absolute. For example:

MIDlet-Jar-URL: http://mumble.java.sun.com/midlets/example.jar

2. Ensure that the Web server recognizes JAD and JAR files:

a. For the JAD file type, set the file extension to .jad and the MIME type to
text/vnd.sun.j2me.app-descriptor.

b. For the JAR file type, set the file extension to .jar and the MIME type to
application/java-archive.

The details of how to configure a Web server depend on the specific software used.
71

http://java.sun.com/j2me/docs/
http://mumble.java.sun.com/midlets/example.jar

Running a Remotely-Deployed
Application Using the Java Application
Manager (JAM)
J2ME-enabled devices include a Java Application Manager (JAM) for downloading,
installing, and configuring J2ME applications. The Emulator has an example JAM
you can use to demonstrate how the user would obtain and manage your
application. This example JAM supports network delivery of applications,
according to the recommended practice for MIDP (see the document, “Over The
Air User Initiated Provisioning Recommended Practice” at
http://java.sun.com/j2me/docs/ for a discussion of recommended
practices).

You can use the Java Application Manager in one of the following ways:

■ Emulate the process using the JAM’s graphical user interface
■ Perform a single operation from the command line with the JAM option

For information on performing single operations through the command line,
see “Java Application Manager (JAM) Options” on page 69 in Chapter 6,
“Operating From the Command Line.”

The rest of this section explains how to use the graphical JAM on a device. To run
the GUI JAM, open a command prompt, and follow these steps:

1. Change the current directory to the {j2mewtk.dir}\bin.

For example, the sequence of commands might be:

C:
cd \WTK104\bin

2. Enter the following command:

emulator -Xjam

The Emulator appears. When you advance past the copyright screen, you see the
JAM’s main screen:
72 Wireless Toolkit User’s Guide • June 2002

http://java.sun.com/j2me/docs/

FIGURE 30 JAM Main Screen

3. Click the Install soft button.

The Emulator asks you where the application is located.

FIGURE 31 Text Box for Entering Application URL

4. Enter the URL of the application’s JAD file.

For information on entering text in the Emulator, see “Inputting Text” on page 49.
Chapter 7 Testing Application Provisioning 73

5. Click the Go soft button.

The JAM attempts to install the application described by the JAD file.
74 Wireless Toolkit User’s Guide • June 2002

APPENDIX A

MIDlet Attributes

This appendix lists and describes the MIDlet attributes, and specifies which
attributes go into a suite’s manifest and JAD files.

Note – When you work under a development environment, the attributes are
automatically placed in the appropriate files. When you use the command line, you
must place them manually.

TABLE 7 MIDlet Attributes

Attribute Name Attribute Description Attribute File

Required Attributes

MIDlet-Name The name of the MIDlet suite that identifies the MIDlets to the
user.

JAD and
manifest

MIDlet-Version The version number of the MIDlet suite. The format is
<major>.<minor>.<micro> as described in the Java Product
Versioning Specification. It can be used by the application
management software for install and upgrade purposes, as well
as for communication with the user.

JAD and
manifest

MIDlet-Vendor The organization that provides the MIDlet suite. JAD and
manifest

MIDlet-Jar-URL The URL from which the JAR file can be loaded. JAD

MIDlet-Jar-Size The number of bytes in the JAR file. A development
environment should automatically generate this field when the
JAR file is built (and prevent it from being edited by the user).

JAD

MicroEdition-Profile The J2ME profile required, using the same format and value as
the system property microedition.profiles. For the MIDP
1.0 release the content of this field must be MIDP-1.0.
In the future, this field will be used to specify the required
MIDP version.

manifest
75

MicroEdition-
Configuration

The J2ME Configuration required using the same format and
value as the system property
microedition.configuration. For CLDC 1.0
compatibility, this field must be CLDC-1.0.
In the future, this field will be used to specify the required
CLDC version.

manifest

Optional Attributes

MIDlet-Icon The name of a PNG file within the JAR file used to represent
the MIDlet suite. It is the icon used by the Java Application
Manager to identify the suite.

JAD and/
or manifest

MIDlet-Description The description of the MIDlet suite. JAD and/
or manifest

MIDlet-Info-URL A URL for information further describing the MIDlet suite. JAD and/
or manifest

MIDlet-Data-Size The minimum number of bytes of persistent data required by
the MIDlet. The device may provide additional storage
according to its own policy. The default is zero.

JAD and/
or manifest

MIDlet-Delete-Confirm A text message provided to the user when prompted to confirm
deletion of the MIDlet suite.

MIDlet-Install-Notify The URL to which a POST request is sent to confirm successful
installation of this MIDlet suite.

<User-Defined Attributes> User-defined attributes relating to specific MIDlets. JAD

MIDlet-n Attributes

MIDlet-<n> The name, icon, and class of the nth MIDlet in the JAR file. The
lowest value of <n> must be 1 and consecutive ordinals must
be used.
The MIDlet’s name identifies it to the user.
The MIDlet’s icon is specified by the name of a PNG image
within the JAR.
The MIDlet’s class is specified by the name of a class that
extends MIDlet and has a public no-argument constructor.

manifest

TABLE 7 MIDlet Attributes

Attribute Name Attribute Description Attribute File
76 Wireless Toolkit User’s Guide • June 2002

APPENDIX B

MIDlet Demonstration

The primary purpose of the J2ME Wireless Toolkit is to enable you to develop a
MIDlet suite. You can also use it to demonstrate MIDlets for non-development
purposes. You can use the J2ME Wireless Toolkit to demonstrate MIDlet suites that
are deployed either on a web site or on a local disk without having to perform
unnecessary development steps.

Note – If you are not doing actual development with the J2ME Wireless Toolkit,
and are only running demonstrations of your MIDlet suite, you are not required to
have the J2SE SDK. You can run with only the JRE instead.

Demonstrating MIDlet Suites Deployed
on a Local Disk
To demonstrate your application, double-click its JAD file. Alternately, you can use
these steps:

1. From the Windows Start menu, select Programs -> J2ME Wireless Toolkit 1.0.4 ->
Run MIDP Application...

The Select A JAD File to Run file dialog appears.

2. Find the JAD file of the application you want to run, and press Run.

The Emulator appears.
77

Demonstrating MIDlet Suites Deployed
on a Web Site
The J2ME Wireless Toolkit enables you to execute a MIDlet suite with the toolkit’s
emulators by visiting the URL of the MIDlet suite’s JAD file in a Web browser. The
MIDlet suite must be deployed on a Web server.

To deploy a MIDP application on a Web server:

1. Change the JAD file’s MIDlet-Jar-URL property to the URL of the JAR file.

This URL must be absolute. For example:

MIDlet-Jar-URL: http://mumble.java.sun.com/midlets/example.jar

2. Ensure that the Web server recognizes JAD and JAR files:

a. For the JAD file type, set the file extension to .jad and the MIME type to
text/vnd.sun.j2me.app-descriptor.

b. For the JAR file type, set the file extension to .jar and the MIME type to
application/java-archive.

Note – The details of how to configure a Web server depend on the specific
software used.

To run the MIDP application from the Web server:

● Go to the URL of the JAD file in a Web browser.

The Emulator appears.
78 Wireless Toolkit User’s Guide • June 2002

http://mumble.java.sun.com/midlets/example.jar

APPENDIX C

Internationalization

This appendix discusses setting the language displayed in the J2ME Wireless
Toolkit and the localization setting of the emulation environment.

Locale Setting for the Wireless Toolkit
A locale is a geographic or political region or community that shares the same
language, customs, or cultural convention. In software, a locale is a collection of
files, data, and code, which contains the information necessary to adapt software to
a specific geographical location.

Some operations are locale-sensitive and require a specified locale to tailor
information for users, such as:

■ Messages displayed to the user
■ Fonts used or other writing-specific information

By default, all KToolBar strings, that is, the entire User Interface(UI), are displayed
in the language of the supported platform’s locale.

For example, Japanese characters can be displayed in the KToolBar running on a
Japanese Windows NT machine, provided that the correct localized J2ME Wireless
Toolkit supplement has been downloaded and installed over the Wireless Toolkit.

You can set the wtk.locale property to have the KToolBar displayed in a
specified locale’s language. For example, you can have the toolkit running on a
Japanese Windows NT machine but still have the KToolBar display shown in
English by setting the locale property to en_US, and making sure that the proper
supplement has been downloaded and installed over the J2ME Wireless Toolkit.
The wtk.locale property should be placed in the
{j2mewtk.dir}\wtklib\ktools.properties file.
79

Emulated Locale
The microedition.locale property is the MIDP system property that defines
the current locale of the device, which is null by default. For the J2ME Wireless
Toolkit Default Emulator, this value is automatically set to the default locale for the
J2SE environment you are running. For example:

■ If you are running in an English system in the US, the microedition.locale
is set to en_US.

■ If you are running in a French system, the microedition.locale is set to
fr_FR.

For information on microedition.locale, see section 4.2, System Properties, in
the JSR-37 Mobile Information Device Profile specification at
http://jcp.org/aboutJava/communityprocess/final/jsr037/
index.html.

You can override the default value by adding the microedition.locale
property to the file {j2mewtk.dir}\wtklib\ktools.properties file and define
the property as desired, as shown in the following examples:

microedition.locale=en_US

microedition.locale=null

For details on setting a default locale, see the J2ME Wireless Toolkit Basic
Customization Guide.

Character Encodings
The CLDC system property, microedition.encoding, defines the default
character encoding name of the device MIDP environment. In the J2ME Wireless
Toolkit Default Emulator environment, this property is set according to the
underlying window system you are using. The property’s value is set to the default
encoding for the J2SE environment running on the same window system. For
example, in an English window system, the encoding setting is

microedition.encoding=ISO8859_1

You can override the default value by adding the microedition.locale
property to the {j2mewtk.dir}\wtklib\ktools.properties file. For example, if
you want to use UTF-8 as the default setting, you can set the property in the
{j2mewtk.dir}\wtklib\ktools.properties file as follows:

microedition.encoding=UTF-8

For more information on character encoding, see section 6.9.2, Property support in
the JSR-30 J2ME Connected, Limited Device Configuration specification at
80 Wireless Toolkit User’s Guide • June 2002

http://jcp.org/aboutJava/communityprocess/final/jsr037/

http://jcp.org/aboutJava/communityprocess/final/jsr030/
index.html

Note – All the J2SE encoders are available in the emulated environment. See the
J2ME Wireless Toolkit Basic Customization Guide for information on how to limit the
list of available encoders for a specific device.

Java Compiler Encoding Setting
The javac.encoding property determines the encoding used by the javac
compiler to compile your source files. The property’s value is set to the default
encoding for the J2SE environment running on the same window system.

You can override the default value by adding the javac.encoding property to
the {j2mewtk.dir}\wtklib\ktools.properties file. For example, if you are
running in an English system but find you need to compile a Japanese resource
bundle, you can specify a Japanese character set, such as:

javac.encoding=EUCJIS

Font Support in the Default Emulator
The default fonts that are used in the emulated environment are set according to
the underlying window system locale. By default, the MIDP environment fonts are
mapped to the default J2SE environment Java fonts. These fonts usually support all
the characters that are required by the current window’s locale.

You can override these fonts to support other characters that are not supported by
the default fonts. See the J2ME Wireless Toolkit Basic Customization Guide for
information on how to configure them.
Appendix C Internationalization 81

http://jcp.org/aboutJava/communityprocess/final/jsr030/

82 Wireless Toolkit User’s Guide • June 2002

APPENDIX D

Certificate Manager Utility

This appendix describes the J2ME Wireless Toolkit’s certificate manager utility,
called MEKeyTool (Mobile Equipment KeyTool). It manages the public keys of
certificate authorities (CAs), making it functionally similar to the keytool utility
that comes with the Java 2 SDK, Standard Edition. The keys can be used to
facilitate secure HTTP communication over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography
Extension (JCE) keystore. You can create one using the J2SE keytool utility, see
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
for more information.

Usage
The MEKeyTool utility is packaged in a JAR file. To run it, open a command
prompt, change the current directory to {j2mewtk.dir}\bin, and enter the following
command:

java –jar MEKeyTool.jar <command>

Commands

-import -alias <alias> [-MEkeystore <MEkeystore>] [-keystore
<JCEkeystore>] [-storepass <storepass>]

Import a public key into the given ME keystore from the given JCE keystore
using the given JCE keystore password. The default ME keystore is
{j2mewtk.dir}\appdb_main.ks and the default JCE keystore is
{user.home}\.keystore.

-delete [-MEkeystore <MEkeystore>] -owner <owner>

Delete a key from the given ME keystore with the given owner. The default ME
keystore is {j2mewtk.dir}\appdb_main.ks.
83

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

-list [-MEkeystore <MEkeystore>]

List the keys in the given ME keystore, including the owner and validity period
for each. The default ME keystore is {j2mewtk.dir}\appdb_main.ks.

-help

Print the usage instructions for MEKeyTool.

Note – The J2ME Wireless Toolkit contains a default ME keystore called
_main.ks, which is located in the appdb\ subdirectory. This keystore includes all
the certificates that exist in the default J2SETM keystore, which comes with the J2SE
JDKTM installation.
84 Wireless Toolkit User’s Guide • June 2002

Index
A
advanced configuration options, 24
applications

running remotely, 71
applications directory, setting, 24

C
Call Graph, 26
certificate authorities (CAs), 83
certificate manager utility, 83
character encodings, 80
class libraries

adding to a project, 22
defining for all projects, 22
external, 22

-classpath option, 63
command line operations, 61
command path, 61
compiling

example from command line, 62
from KToolBar, 19
from the command line, 62

Connected, Limited Device Configuration
specification, 80

D
debugging

from command line, 66
from KToolBar, 20

debugging options, 66
DefaultColorPhone

description, 42
DefaultGrayPhone

description, 42
device characteristics, table of, 42
drawing speed, setting, 37

E
emulator command, 65
emulators

application manager sample
implementation, 41

debugging support, 41
default font support, 81
demonstrating applications, 77
device characteristics, 42
language support, 79
limitations, 41
running remotely deployed applications, 72
simulations, types of, 41
tracing support, 41

example devices, 42
external class libraries, 22

F
font support, 81

G
Graphics primitive latency, 37

H
-help option, 65
HTTP secure communication, 83

I
-import command, 83

J
Java Application Descriptor (JAD) file, 4
85

Java Application Manager (JAM), 72
Java Application Manager(JAM) options, 69
Java Archive (JAR) file, 4
Java Cryptography Extension (JCE) keystore, 83
javac command, 62

K
keytool utility, 83
KToolBar

advanced configuration options, 24
cleaning project files from, 20
compiling from, 19
debugging from, 20
opening window, 13
packaging from, 21
preverifying from, 19
project directories, 14
running from, 19

ktools.properties, 24
ktools.properties file, 79

M
managing device speed, 36
manifest file, creating, 64
MEKeyTool

running from command line, 83
Memory Monitor, 28

data display, 29
enabling, 31
viewing information, 30

memory usage, 28
memory usage graph, 29
messages

clearing from Network Monitor, 35
filtering, 35
saving, 35
sorting, 36
viewing by URL or status, 36

microedition.encoding property, 80
microedition.locale property, 80
MIDlets

adding specific properties, 18
adding user defined properties, 17
attributes, table of, 75
changing order of MIDlets, 19
cleaning project files, 20

compiling, 19
creating obfuscated package, 21
debugging, 20
defined, 3
deploying on a web server, 78
deploying on local disk, 77
editing attributes, 16
modifying specific properties, 17
packaging, 21
preverifying source code, 19
removing specific properties, 18
removing user defined properties, 18
running applications, 19

MIDP application development diagram, 2
MinimumPhone

description, 42
Mobile Equipment KeyTool(MEKeyTool), 83
Mobile Information Device Profile

specification, 80
Motorola_i85s

description, 42

N
NetLib API, redirecting calls

Palm OS Emulator
redirecting NetLib API calls, 9

Network Monitor, 32
clearing messages, 35
data display, 32
disabling filtering, 35
examining saved messages, 34
filtering messages, 35
saving message files, 35
showing messages by URL or status, 36
sorting messages, 36
viewing information, 34

network speed parameter, setting, 38

O
obfuscated package, creating, 21
obfuscated packages, 5
Object Monitor, 29
Over the Air (OTA) provisioning, 71
86 Wireless Toolkit User’s Guide • June 2002

P
packaging

creating obfuscated package, 21
example from command line, 64
from KToolbar, 21
MIDP applications, 3
project files, 21

packaging from command line, 63
Palm OS Emulator

configuring, 8
disabling debugging, 9
running tools with, 7
setting location, 10

PalmOS_Device
description, 42

performance tuning features, 25
Preferences tool

accessing, 23
accessing from command line, 61
Performance tab, 37
setting drawing speed, 37
setting refresh speed, 37

preverify command, 63
preverifying

example from command line, 63
from KToolBar, 19
from the command line, 63

Profiler, 25
Call Graph, 26
data display, 26
examining data for a specific method, 28
saving information, 27
viewing information, 27

project directories, 14
project files

removing, 20
projects

creating, 15
opening, 15

properties
adding user defined, 17
modifying MIDlets, 16
removing user defined, 18

R
refresh modes, 37
refresh speed, setting, 37
remotely-deployed applications, 71

RetroGuard code obfuscator, 21
retroguard.jar, 21
revision control files, 24
Revision Control System (RCS), 24
RevisionControl property, 24
RIMJavaHandheld

description, 42
run options, 66
running

examples from command line, 69
from command line, 65
from KToolBar, 19

T
-target 1.1 compile option, 62
tracing options, 66

U
Utilities tool

accessing from the command line, 61
Utilities tool, accessing, 23

V
-version optopn, 65
VM emulation speed, 36
VM speed emulation

setting, 38

W
Wireless Toolkit

certificate manager utility, 83
compiling, 3
debugging, 3
installation directory contents, 8
installing, 7
list of sample devices, 42
packaging, 3
preverifying, 3
running, 3
running from command line, 61
system requirements, 7
using with an IDE, 3

Wireless Toolkit, setting locale, 79
Index 87

wtk.locale property, 79

X
-Xdebug option, 66
-Xjam option, 69
-Xquery option, 66
-Xrunjdwp option, 67
-Xverbose option, 66
88 Wireless Toolkit User’s Guide • June 2002

	User’s Guide
	Contents
	Figures
	Tables
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Using Operating System Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction to the Wireless Toolkit
	Overview
	Compilation and Prefabrication
	Running and Debugging
	Packaging
	Packaging Obfuscated Source Code

	Installing the Wireless Toolkit
	System Requirements
	Installation Procedure
	Configuring the Palm OS Emulator

	Operating with KToolBar
	Navigating in KToolBar
	KToolBar Projects
	Creating a New Project
	Opening an Existing Project

	Editing MIDlet Suite Attributes
	Modifying MIDlet Suite Attributes
	Modifying MIDlet-Specific Attributes
	Adding User-Defined Attributes
	Removing User-Defined Attributes
	Adding MIDlet-Specific Attributes
	Removing MIDlet-Specific Attributes
	Changing the Order of the MIDlets

	Compiling and Preverifying
	Running
	Debugging
	Cleaning Up Project Files
	Packaging
	Implementing Support for Code Obfuscation

	Using Class Libraries
	External Libraries for a Specific Project
	External Libraries for All Projects

	Setting Emulator Preferences and Using Emulator Utilities
	Customizing KToolBar
	Setting the Application Directory
	Setting the Javac Encoding Property
	Working with Revision Control Systems

	Performance Tuning Applications
	Profiling Your Application
	Profiling Data Display
	Viewing Profiling Information
	Saving Profiling Information
	Examining Saved Information

	Examining Memory Usage
	Memory Monitor Data Display
	Viewing Memory Usage
	Saving Memory Usage Information
	Examining Saved Information

	Monitoring Network Traffic
	Network Monitor Data Display
	Viewing Network Traffic
	Saving Message Information
	Examining Saved Messages

	Saving a Networking Session
	Clearing the Message Tree
	Filtering Messages
	Disabling Filtering

	Sorting Messages
	Viewing Messages

	Managing Device Speed
	Setting Performance Parameters
	Setting VM Speed Parameters
	Setting Network Speed Parameters

	Working With the Emulator
	Example Devices
	Device Characteristics
	DefaultColorPhone and DefaultGrayPhone
	MinimumPhone
	Motorola_i85s
	RIMJavaHandheld
	PalmOS_Device

	Inputting Text
	Using the Device to Input Text
	Using the Keyboard to Input Text

	Application Demos
	Selecting a Default Device
	Preferences and Utilities
	Device Categories
	DefaultEmulator Preferences
	Setting the Web Proxy
	Choosing an HTTP Version
	Setting the Heap Size
	Setting the RMS Directory
	Enabling Tracing

	DefaultEmulator Utilities
	Cleaning Device Storage
	Monitoring Memory Usage
	Profiling Methods
	Monitoring Network Traffic
	PalmOSEmulator Preferences
	Setting the Web Proxy
	Setting the POSE Location
	Showing the Heap Status
	Saving Application Output
	Enabling Double Buffering
	Hiding the Soft Buttons
	Setting the Graphics Depth
	Showing the Keypad

	PalmOSEmulator Utilities
	Generating PRC Files

	Operating From the Command Line
	Preliminary Checks
	Accessing Preferences and Utilities
	Compiling Class Files
	Arguments
	Options
	Example

	Preverifying Classes
	Arguments
	Options
	Example

	Packaging a MIDlet suite
	Creating a Manifest File
	Creating an Application JAR File
	Arguments

	Creating an Application JAD File
	Example

	Running the Emulator
	General Options
	Running Options
	Tracing and Debugging Options
	Emulator Preferences Setting Option
	Java Application Manager (JAM) Options
	Examples

	Testing Application Provisioning
	Deploying Applications on a Web Server
	Running a Remotely-Deployed Application Using the Java Application Manager (JAM)

	MIDlet Attributes
	MIDlet Demonstration
	Demonstrating MIDlet Suites Deployed on a Local Disk
	Demonstrating MIDlet Suites Deployed on a Web Site

	Internationalization
	Locale Setting for the Wireless Toolkit
	Emulated Locale
	Character Encodings
	Java Compiler Encoding Setting

	Font Support in the Default Emulator

	Certificate Manager Utility
	Usage

	Index

